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Vortexlike swarming behavior is observed in a wide range of biological systems. In the work reported here
a discrete particle model is used to investigate the onset of such vortexlike behavior in a swarm of interacting
particles. A constrained minimization of the total effective energy of the swarm of particles is performed, with
the total angular momentum of the swarm conserved. It is shown that the emergence of vortexlike behavior can
then be viewed as a constrained minimum energy configuration which the swarm relaxes into.
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Vortexlike swarming behavior is observed in a wide range
of biological systems from bacteria to higher vertebrates
�1–3�. Such behavior is also seen in simulations of interact-
ing particles which attempt to capture the processes through
which individual agents in a swarm form coherent spatial
patterns �4–6�. Previous studies have used artificial interac-
tion potentials to model long-range aggregation and short-
range repulsion within a swarm �5,6�. Propagating the mo-
tion of the swarm using such artificial potential fields shows
that swarms of interacting particles can relax into vortexlike
states. In the work reported here, constrained minimization
of the total effective energy of the swarm is performed, with
the total angular momentum of the swarm conserved. Angu-
lar momentum conservation arises from the pair-wise inter-
action between members of the swarm, while energy mini-
mization arises through dissipation as swarm members
interact. Vortexlike spatial patterns can then be viewed as a
constrained minimum-energy configuration. The interactions
between swarm members are chosen to reflect rule based
approaches which have been successful in both modeling �7�
and laboratory experimentation �8�.

A swarm of biological or artificial agents is comprised of
N identical particles of mass m with position and velocity
�xi ,vi� defining the state of the ith particle. As will be seen
later, the center-of-mass of the swarm C forms an inertial
origin relative to the fixed frame O, as shown in Fig. 1.
Aggregation of the swarm is achieved through a long-range
attractive potential Uij

a =−Caexp�−�xij � / la�, while collision
between particles is prevented through a short-range repul-
sive potential Uij

r =Crexp�−�xij � / lr� �5,6�. The strength of the
attractive and repulsive potential is defined by Ca and Cr
with range la and lr, such that la� lr. In addition, it will be
assumed that particles in the swarm attempt to align with
their neighbors locally through a velocity dependent orienta-
tion function �i, as used in rule based approaches to swarm
modeling �7�. Separate propulsive and drag forces acting on
each particle in the swarm can be included, however these
quickly equilibrate so that the swarm is largely driven by the
interaction of the potential fields �6�.

The swarm of interacting particles will now be defined
through the interaction potential and orientation function
such that

ẋi = vi, �1a�

mv̇i = − �Ui
a − �Ui

r − �i, �1b�

where Ui=� jUij and ��·�=��·� /�xi. The orientation function
can be defined as �i=� jCo�vij · x̂ij�exp�−�xij � / lo�x̂ij, where

�·̂� denotes a unit vector, Co is the strength of the orientation
function and lo is the range over which the orientation inter-
action occurs. With this function, motion towards or away
from neighbors is weakly damped, proportional to the com-
ponent of relative velocity along the vector connecting
neighboring particles. This results in a local alignment of
particle velocity vectors, as used in rule based approaches
�7�. Later the three competing terms in Eq. �1b� will be de-
fined in a hierarchy such that lr� lo� la. This hierarchy is
equivalent to the zone of repulsion, zone of orientation, and
zone of attraction used successfully in both simulation �7�
and laboratory experimentation �8�.

The effective energy of the swarm can be obtained by
direct summation of Eq. �1b� so that �imvi · v̇i=−�ivi ·�Ui

a

−�ivi ·�Ui
r−�ivi ·�i. The effective energy is then defined

though a summation to evaluate each pair-wise potential in-
teraction and a summation of the kinetic energy of each par-
ticle. The total kinetic energy T of the swarm is simply T
=1/2�imvi

2 and the total effective potential U is determined
from U=1/2�i� j�Uij

a +Uij
r �. It can then be shown that

d /dt�T+U�=−�ivi ·�i so that the swarm of particles will
slowly leak energy and relax to a minimum-energy state
where �ivi ·�i=0. This condition is satisfied if vij · x̂ij =0,
corresponding to a state of relative equilibrium with a fixed
separation distance �xij� between the particles and local align-
ment of velocity vectors.

The total angular momentum of the swarm is obtained by
a summation of the couple from each pair-wise interaction
within the swarm. Summing Eq. �1b� it can be seen that
�imxi� v̇i=−�ixi��Ui

a−�ixi��Ui
r−�ixi��i. However,

both the gradient of the potential field and the orientation
function are formed by the summation of pair-wise interac-
tions along x̂ij, the vector connecting each pair of particles. A
consequence is that the summations on the right will vanish
due to the internal symmetry of the interactions within the
swarm. Pairs of internal torque couples will cancel as can be
seen using the identity xi�x j =−x j �xi in the summations.
Identifying the angular momentum of the ith particle as Li*Email address: colin.mcinnes@strath.ac.uk
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=mxi�vi it can be seen that �idLi /dt=0 and so the total
angular momentum of the swarm H=�iLi is conserved.
Through a similar argument it can be shown that the total
linear momentum of the swarm is also conserved. The
center-of-mass of the swarm C at position R therefore trans-
lates with constant velocity V and so forms an inertial frame
of reference.

It has been shown that the swarm of particles dissipates
energy, but that the total angular momentum of the swarm is
conserved as it relaxes. Possible states of the swarm can be
explored by using a Lagrange multiplier to enforce conser-
vation of angular momentum, while energy slowly leaks

from the swarm. An augmented energy function E is now
defined as E= �T+U�−� . �L−H� where � is the Lagrange
multiplier which enforces conservation of angular momen-
tum so that

E = �1

2�
i

mvi
2 +

1

2�
i

�
j

�Uij
a + Uij

r ��
− � . ��

i

mxi � vi − H� . �2�

The total effective energy of the swarm is now minimized by
finding a set of states for the swarm particles �xi ,vi� which
yield the first variation �E=0. Differentiating the augmented
energy function, the two conditions for �E �0 are given by

�E

�xi
= ��Ui

a + �Ui
r� − m� � vi = 0, �3a�
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FIG. 1. �a� Swarm of interacting particles with center-of-mass C
at position R relative to an inertial origin O. Due to internal sym-
metry in the pair-wise interaction between particles, the center-of-
mass is inertial and translates with uniform velocity V. �b� Relax-
ation of the swarm of interacting particles to a vortexlike state with
angular momentum H. The swarm rotates with rigid body motion
about the vector H in a minimum energy configuration.
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FIG. 2. �Top left to bottom right� Formation of a vortexlike state

in a swarm of interacting particles �N=30� with Ca=1, Cr=1,
Co=0.1, la=1, lr=0.2, lo=0.5 for nondimensional time t=0 until
t=10.
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�E

�vi
= m�vi − � � xi� = 0. �3b�

It can be seen immediately from Eq. �3b� that the constrained
minimum-energy state of the swarm corresponds to vortex-
like rotation. The velocity vector of each particle is normal to
its position vector and the vector � such that vi=��xi. The
Lagrange multiplier � is therefore identified as the angular
velocity vector of the swarm which will be directed along H,
as shown in Fig. 1. From Eq. �3a� it can be seen that this
vortexlike state is achieved when the centripetal acceleration
induced by vortexlike rotation is balanced by the gradient of
the potential field such that ��Ui

a+�Ui
r�−m�� ���xi�=0.

It can therefore be concluded that a swarm of particles in an
initially random state will relax into spatially coherent vor-
texlike behavior, as observed in a wide range of biological
swarms �1–3� and in simulation �4–7�. It should be noted that

setting the first variation �E=0 has yielded conditions for E
to be stationary, but that a global minimum is not explicitly
guaranteed. It may be possible for the swarm to relax to a
local constrained minimum-energy state, however it would
be expected that fluctuations would lead to escape and relax-
ation towards the global minimum-energy state.

In order to illustrate the formation of vortexlike structures
using the mechanism discussed above, a planar swarm of
N=30 particles is considered. The particles in the swarm are
randomly distributed over a unit disk with a random distri-
bution of initial velocities such that �vi�0� � �1. The free pa-
rameters are selected such that Ca=Cr�Co and lr� lo� la so
that the swarm experiences long-range aggregation, short
range repulsion, and local velocity alignment. It can be seen
from Fig. 2 that the swarm slowly relaxes to a vortexlike
state, while the center-of-mass of the swarm translates with
constant velocity, as expected.
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